
0018-9162/02/$17.00 © 2002 IEEE July 2002 25

P E R S P E C T I V E S

Computers
Are from Mars,
Organisms Are
from Venus

I n recent years, biology and computer science have undergone an
increasingly intense interdisciplinary merger, one that has attracted
media attention and eager investors. The resulting media buzz arises
from the strenuous struggle as these two disciplines come together.
Is the sound we hear the agonizing grind of unmatched gears, or the

smooth hum of an accelerating machine?
I suspect the latter. Biology and computer science share a natural affinity.

Erwin Schrödinger envisioned life as an aperiodic crystal, observing that the
organizing structure of life is neither completely regular, like a pure crystal,
nor completely chaotic and without structure, like dust in the wind. Perhaps
this is why biological information has never satisfactorily yielded to classi-
cal mathematical analysis. A simple look out the window, however, shows the
great abundance of structure in biological objects, from the fractals found in
the branches of an oak tree to the symmetries of DNA’s double helix.

Machine computations combine elegant algorithms with brute-force cal-
culations—which seems a reasonable approach to this aperiodic structure.
Likewise, computing seeks to create a machine that can flexibly solve diverse
problems. In nature, such plastic problem solving resides uniquely in the
domain of organic matter. Whether through historical evolution or indi-
vidual behavior, organisms always adaptively solve the problems their envi-
ronment poses. Thus, examining how organisms solve problems can lead to
new computation and algorithm-development approaches.

BIOLOGY MEETS COMPUTER SCIENCE
Biology is the youngest of the natural sciences. When its collected infor-

mation reaches a critical density, a natural science progresses from infor-
mation gathering to information processing. This latter activity has become
the dominant one in more mature sciences like physics, in which theoreti-
cal abstractions and predictions play a primary role because new informa-
tion is scarce.

Until recently, the major activity in biology has been gathering new infor-
mation in the lab and field. The growth of biological information in the past
five years, especially at the molecular level, has been astonishing. The growth
curve of the information stored in GenBank (http://www.ncbi.nlm.nih.gov/),
the primary molecular-biology information database, follows an exponen-

Combining cold silicon
and hot protoplasm
may constitute a
marriage of opposites,
but this union could
produce genetics
research prodigies.

Junhyong Kim
Yale University

26 Computer

tial curve that closely mimics Moore’s law—
doubling every 18 months or so.

When I started doing laboratory work
about 10 years ago, it took us around five
days to obtain 200 base pairs of DNA
sequence data. Two years ago, biotechnol-
ogy corporation Celera produced the fruit fly
genome’s 170 million or so bases in a few
months—a feat that researchers apparently
can now perform in a few weeks. Current
estimates indicate that the public-sector
sequencing capacity devoted to just the
Human Genome Project has reached about

28 million bases a month, with private capacity
climbing to several times that figure.

This volume of information overwhelms us. No
single person, or even a large group, can ever hope
to make sense of this information, especially at the
rate researchers produce it. By helping researchers
process this vast collection of data, computer sci-
ence can assist in dispersing this information storm.

Currently, the two most successful uses of com-
puters in biology are comparative sequence analysis
and in silico cloning—the process of using a com-
puter search of existing databases to clone a gene.

Comparative sequence analysis
When researchers isolate new molecular

sequence data in the laboratory, they want to know
everything about that sequence. A first step is to see
if other researchers have already studied any mol-
ecular sequences similar to this sequence. Two
mechanisms generate similarity of sequences. Like
human relatives, biomolecular sequences related
by evolutionary descent share sequence similarities.
The structural requirement of performing a partic-
ular function also constrains two molecules with
similar function to resemble each other. Therefore,
researchers can learn a great deal about a biomol-
ecular sequence by comparing extrapolated infor-
mation to similar, already well-studied sequences.

Probably the most widely used computational
tool in biology, BLAST—Basic Local Alignment
Search Tool—searches databases like GenBank for
all sequences similar to a target sequence. These
days, when researchers isolate a new molecular
sequence, the first thing they usually do is run a
BLAST search against existing databases.

In silico cloning
Finding the information to perform successful

cloning—an important activity in biology—is com-
parable to searching for a particular sentence in a
book that resides somewhere in a huge library.

Finding a sentence might encompass searching by
semantics, such as “find a sentence that expresses
the angst of a young prince”; or by syntax, such as
“find a sentence that starts with a preposition, pre-
sent subjective verb,” and so forth; or by a pattern,
such as “find a sentence that starts with ‘To be or
not to be.’” Likewise, in an experimental setting,
we may want to clone a gene by its phenotype, say,
olfaction; by its structure, say, a G protein-coupled
receptor; or by a pattern fragment, say, the DNA
pattern “ACCAGTC.”

Performing these searches in the laboratory resem-
bles physically going to the library to look for a book
that contains the information we seek: Both activi-
ties present many logistical problems. Genome pro-
jects are somewhat like putting all the library’s books
on a CD-ROM: Although doing so alleviates the
physical access problems, other problems remain.
Storing the genome data is like having all the books
on a CD without help guides such as titles, annota-
tions, and cross-references. Fulfilling the request to
“find a sentence that expresses the angst of a young
prince” would require much reading and interpreta-
tion. However, conducting a pattern search would
simplify the task by helping to sift through the infor-
mation rapidly. Similarly, using in silico cloning to
search existing databases is a significant benefit of
genome projects. Using biological semantics to search
genome databases would be a major achievement.

Computational approaches that use the computer
to guide the more expensive and time-consuming
wet-lab experiments can help solve long-standing lab-
oratory problems. In a collaborative project with
Drosophila biologist John Carlson, my colleagues
and I successfully used a quasiperiodic feature clas-
sifier (QFC), a new computer algorithm, to solve a
15-year-old problem of isolating the fruit fly’s olfac-
tory genes.1 Through identifying G protein-coupled
receptors in the Drosophila genome, the computer
program narrowed the possible candidate genes suf-
ficiently to make the experimental work manageable.

Synthesizing information into knowledge
These days, biologists use computers routinely

to assist with many activities, including

• biomolecular sequence alignment,
• assembly of DNA pieces,
• multivariate analysis of large-scale gene ex-

pressions, and
• metabolic pathway analysis.

Just as conducting normal business activities has
become nearly impossible without informatics sup-

Currently, the two
most successful

uses of computers
in biology are
comparative

sequence analysis
and in silico cloning.

July 2002 27

port, so too has biological research come increas-
ingly to depend on informatics. What other impor-
tant challenges confront computational biology?

Historically, and somewhat inherently, biology is
a diverse field that collects information from many
distributed sources. For example, 50 different lab-
oratories around the world might study a particu-
lar gene. Given these heterogeneous information
sources, collecting and integrating them into a
coherent information set presents a major problem.

Given the pace of data production, the funda-
mental task of curating and integrating distributed
databases is critically important. The problems
encountered range from relatively simple to almost
philosophical. Simple problems include different
labs giving the same object 10 different names.
Difficult problems include the seemingly trivial
challenge of how to define a gene—a practical
rather than philosophical problem for a database
specialist. Currently, most major databases, such as
GenBank and Swiss-PROT (http://www.ebi.ac.
uk/swissprot/index.html), operate partially by
human curation and partially by various auto-
mated data-sharing schemes. Issues of data qual-
ity, interoperation, and integration of dispersed
information sources remain problematic.

Computational biology researchers use existing
information to extrapolate knowledge about novel
biomolecules. Because genome projects generate
raw data without giving them biological meaning,
annotating this raw data with all the pieces of infor-
mation that might be biologically relevant becomes
important. Useful information includes whether a
stretch of DNA contains an amino acid coding
sequence, transposons, or a regulatory sequence
and, if an amino acid is coded, what its putative
function is, and so on.

One detailed annotation addressed the
3,000,000 bases that surround the Drosophila
melanogaster ADH sequence (http://www.flybase.
org/). When researchers completed the Drosophila
sequence, they held an annotation jamboree to pro-
vide as much biological context as possible for the
raw sequences.2 The researchers used a variety of
computer tools combined with human interpreta-
tion to carry out much of this annotation. However,
given the rate at which researchers now generate
DNA sequence information, automatically anno-
tating the raw data presents a computational chal-
lenge, and careful human analysis is becoming
increasingly difficult. The tools necessary for
addressing this problem include gene prediction,
gene classification, comparative genomics, and evo-
lutionary modeling.

Although researchers increasingly synthe-
size biological information into general theo-
ries, our knowledge remains scattered and
complex. For example, we have a great deal
of detailed information about the molecular
events governing the early development of
Drosophila. However, this extremely complex
knowledge takes the form of statements like
“gene A and B interact to positively induce
gene C, but under the presence of gene D, the
positive regulation is modulated by.” We usu-
ally do not use an a priori theory to gather
coordinated data; instead, hundreds of differ-
ent research groups make independent obser-
vations hoping to synthesize that theory. These
hundreds of independent observations appear
in thousands of articles that use scores of variations
in terminology, methodology, and so forth.

Worse, all this data applies to only a tiny segment
of the field: the biology of fruit fly development. To
cope with the information explosion represented
by the tens of thousands of research articles that
appear in print each year, we need a system that
performs automatic knowledge extraction: a com-
puter program that scans all these articles, classi-
fies them, and produces synthetic new information.
While daunting, such a project would be useful not
only in the biological context but also in everyday
life. No doubt this is why automatic text retrieval
and knowledge extraction have become an impor-
tant research area in computer science (http://www.
cs.cmu.edu/cald/research.html), which has just
begun to provide new tools for biological research.3

COMPUTATIONAL BIOLOGY’S HOLY GRAIL
When asked what the Holy Grail of computa-

tional biology is, most researchers would answer
that it is either sequence-structure-function predic-
tion or computing the genotype-phenotype map.

Predicting molecular structure
Sequence-structure-function prediction refers to

the idea that, given a molecule’s sequence identity,
we would like to predict its three-dimensional struc-
ture and, from that structure, infer its molecular
function. In the past, researchers were widely suc-
cessful in deducing the universal genetic code,
which consists of a relational map from DNA
sequences to amino acid sequences, revealing the
amino acid identity once we know the DNA
sequence identity. This code’s universality and ele-
gant combinatorial structure are a remarkable fact
of nature. In addition, our knowledge of the code
has extremely practical consequences.

Although
researchers
increasingly
synthesize
biological

information into
general theories,

our knowledge
remains scattered

and complex.

28 Computer

Identifying the amino acid sequence of a
protein is difficult and costly, but if we have
the genetic code, we only need to identify the
corresponding DNA sequence. When going
from the amino acid sequence to protein
structure, if we could determine a direct rela-
tionship between the amino acid sequence
and the corresponding protein’s three-dimen-
sional structure, we should be able to gener-
ate a relational map from the primary amino
acid sequences to the folded protein struc-
tures. Deducing this map would be another
wonderful triumph that would prove tremen-
dously useful. Once we have this second

genetic code, obtaining complete information on
the corresponding protein structure would only
require knowing the DNA sequence.

Several factors make structure prediction from
sequence extremely difficult, however. In the case
of the genetic code, the possible values consist of
the 20 different amino acids. Proteins consist of
approximately 1,000 different major structures—
called folds—each with tens of thousands of vari-
ations. In proteins, the physical forces that govern
the interaction of the hundreds to thousands of
amino acid residues determine the structure. We
do not know the details of these interactions. Even
if we knew them, computing the consequences of
these forces would be nearly impossible because
doing so requires solving a physics problem that
involves hundreds to thousands of nonideal
bodies.

Still, we have made significant progress in this
area, thanks in part to the Critical Assessment of
Structure Prediction (CASP) competition (http://
www.ncbi.nlm.nih.gov/Structure/RESEARCH/casp
3/index.shtml). This worldwide open challenge
invites computational biologists to predict protein
structures drawn from test cases that have been
solved using experimental techniques yet to be pub-
licly released. CASP’s contest format has generated
a great response, resulting in dramatic improve-
ments in prediction rates.

From genotype to phenotype
Researchers have uncovered reasonable evidence

indicating that a protein’s structure approximately
determines its molecular functions, such as cataly-
sis, DNA binding, and cell component binding.
Therefore, some researchers think a relational map
between structure and function should be
deducible, perhaps as a third genetic code. This idea
also drives so-called rational drug design.

If researchers could predict the action of a pro-

tein by looking at its three-dimensional structure—
much as an engineer looks at an automobile
design—they could say, for example, “If we stream-
line the structure here and reduce the bump here,
we will get a better working drug.” Further, if
researchers solve the sequence-structure problem,
they would also know exactly how to make those
changes.

Unfortunately, this ideal remains beyond reach,
not least because we have at best only a murky idea
of what protein function means, both in theory and
practice. An object’s function often depends on
context. For example, a screw that holds a chair
together has a markedly different context than the
screw on a car jack. Because the parts of an object
that confer function also often interrelate, we can’t
chop off a part and expect the function to remain
unchanged.

All of these concerns bring us to the genotype-
phenotype map problem. A genotype refers to the
genetically encoded information in an individual
genome. Technical details aside, practically speak-
ing, the genotype consists of the sequence identity
for a person’s entire DNA. The phenotype refers to
any measured trait of a particular individual—for
example, a person’s hair color, body weight,
propensity to heart attack, and so on. Genetic
encoding does not determine all these measure-
ments, but the idea is that they result from genetic
information interacting with a particular environ-
mental context. For every environmental context,
there is a map between the genotype and pheno-
type. Thus, given a person’s DNA sequence and
environmental context, we should be able to deter-
mine most measured traits. That is why many drug
companies have begun to ask how the efficacy of a
given drug treatment interacts with the recipient’s
genotype.

Ultimately, we must determine if we can take an
engineering approach to biological objects. Some of
the most spectacular advances in biology came
from the optimistic view that we will achieve a
physics-like understanding of this discipline. Per-
haps, then, the Holy Grail of biology is a mechan-
ical, physical understanding of living organisms. Is
there in fact a grand theory of the organism—a set
of laws that govern its form and function?
Evolutionary theory has provided such laws and
theories for the generative process of populations.
Can we now obtain similar theories for an indi-
vidual generative process? Clearly, the growing
body of molecular data and its computation will
play a fundamental role in forming the answer to
this question.

The relationship
between amino
acid strings and
the 3D structure

of proteins is
thought of as
the second

genetic code.

July 2002 29

DNA COMPUTING
AND GENETIC ALGORITHMS

Leonard Adleman4 first suggested the possibility
of using DNA for computation. Adleman used
sequence-specific hybridization of DNA molecules
and polymerase chain reaction to solve the com-
putational problem of finding a Hamiltonian path
in a directed graph—a route that starts at a partic-
ular vertex of a graph and completely traverses
each vertex exactly once before ending at a second
designated vertex. A sample Hamiltonian problem
would be to find the route, if it exists, from New
York to Boston, that goes through each of 10 major
Eastern seaboard cities exactly once.

Molecular computing
More specifically, Adleman was motivated by

the computational difficulty presented by the class
of NP-complete problems—here NP stands for
nondeterministic polynomial time. Each problem
in this class has the property that one can effi-
ciently verify whether a proposed solution is
indeed an actual solution, but no one knows how
to efficiently find an actual solution if one exists.
For the past 30 years, computer scientists have
generally held that no efficient algorithm exists
for any of the NP-complete problems. The prob-
lem of finding a Hamiltonian path in a directed
graph is NP-complete. It is easy to verify whether
a proposed sequence of vertices indeed constitutes
a Hamiltonian path. However, researchers believe
that there is no efficient, deterministic algorithm
for finding a Hamiltonian path in a given directed
graph—assuming such a path exists.

One useful observation that can be made about
any NP-complete problem is that a finite set of
potential solutions to propose always exists——
although that set may be of exponential size. For
the directed Hamiltonian path problem, we need
only consider the set of all possible permutations of
the graph’s set of vertices. If a Hamiltonian path
exists in the graph, it must be represented by one of
the permutations. We say that the problem can be
solved efficiently nondeterministically because if we
can guess one of the possible permutations, that per-
mutation can be verified as a solution—or not—effi-
ciently. Hence, we can efficiently solve the problem
of finding a Hamiltonian path with an exponential
number of processors, each verifying a different per-
mutation. In Adleman’s alternate formulation, we
use the hybridization of an exponentially vast num-
ber of DNA molecules, in parallel, to solve the prob-
lem of actually finding a permutation that represents
a Hamiltonian path.

Since Adleman’s original work, additional
research has shown that biologists can use
DNA to encode a universal computer, the
same kind of computer we use on our desk-
tops, and that this property stems purely from
DNA’s ability to find complementary sequence
pairs. Yet considerable skepticism still sur-
rounds the practical use of such computers.
The main issues involve concerns about

• encoding the problem and reading the
output, which can take days for even
simple problems;

• inherent computational errors; and
• the amount of DNA required to solve practi-

cal hard problems.

As an example of this last issue, currently the
largest supercomputers perform approximately 1019

elementary switch operations per second. Although
the molecular interactions of DNA hybridization can
be extremely fast, cycling such operations takes
approximately 102 seconds. It’s unclear how many
logical-circuit switch operations equal a single DNA
hybridization reaction. However, if we assume equiv-
alency, obtaining 1019 switch operations would
require approximately 10 mmoles of DNA. This
would amount to about 100 grams of DNA using,
say, 24 base pair sequences—an unbelievably large
amount of DNA for a molecular experiment.

Despite these problems, the idea of DNA com-
puters has opened exciting new avenues of research
in nanotechnology and computation models.
Although real organisms do perform complex com-
putations,5 whether we can harness this ability for
our specific use remains an open question.

Genetic algorithms
Researchers such as John Holland laid the foun-

dations for genetic algorithms in the 1960s when
they began describing the possibility of machines
that can adaptively solve complex problems. In
recent years, the term evolutionary computing has
been applied to the diverse field that flowered from
this seminal work because the predominant idea is
to solve complex problems—such as a Hamiltonian
problem—by emulating the evolutionary adaptive
behavior of real organisms.

Strict evolutionary adaptation requires three
components. First, the organism should have a
property or suite of properties that governs its dif-
ferential survival. Second, individuals should inherit
these properties. Third, a mechanism should gen-
erate variations of these properties via mutation.

The idea of DNA
computers has

opened exciting new
avenues of research
in nanotechnology
and computation

models.

30 Computer

Evolutionary computing thus involves gen-
erating a population of computer programs
and—by tying their survival to their prob-
lem-solving ability—selects those that are
particularly good at solving a posed problem.
The reproduction and inheritance property
ensures that this selection process continues
through many cycles. The mutation property
allows the population to continuously try
new variants of the solutions. Many studies
show that these algorithm classes may be par-
ticularly suitable for hard problems where
“the objective function landscape is rough.”

We can better understand the meaning of
this phrase if we consider that many difficult

problems can be visualized as searching for the
highest mountain peak in a mountain range. In this
metaphor, the height of the mountains represents
an optimal criterion, often called the objective func-
tion. The land these mountains occupy represents
the search space—the collection of possible solu-
tions whose appropriateness the objective function
measures.

For example, in the protein-structure-determi-
nation problem, the optimal criterion might be the
total free energy of the folded structure, and the
search space would consist of all possible ways to
fold an amino acid sequence. Together, the search
space and the objective function comprise the prob-
lem’s landscape.

Many computer algorithms use a rule, such as
“look around and go up the steepest direction,” to
traverse such a landscape. But, just as in real life, a
rugged landscape often foils these simple rules.
Although researchers remain uncertain as to exactly
how the theory works, it seems that the principles
used in evolutionary algorithms work well in such
situations.

Evolutionary computing versus artificial life
Despite its appearance of evolving intelligence

and self-direction, evolutionary computation
should not be confused with artificial life.
Evolutionary computing generally functions as a
problem-solving device, whereas artificial life mim-
ics an organism’s behavior.

These two ideas do mix, however, in evolution-
ary programs. Basically, the code from these pro-
grams self-replicates and adaptively changes in
response to some kind of selection scheme, usually
their ability to solve a problem in the shortest
amount of time. In genetic algorithms, researchers
schematically code into the programs the problem
to be solved. Further, this architecture does not

change the scheme’s parameters—they change
adaptively.

In evolutionary programming, on the other hand,
the actual execution of the program changes fun-
damentally. An example involving the protein-struc-
ture-determination problem will make this clearer.
Given a string of amino acids, we must compute the
three-dimensional position of individual atoms that
will minimize total free energy. To implement a
genetic algorithm, we might start by assigning ran-
dom three-dimensional coordinates to the atoms to
obtain a set of random solutions. Next, we evalu-
ate the solutions’ implied free energy and select for
the lower free-energy solutions. We then change the
three-dimensional coordinates to mutate the solu-
tions.

Under the evolutionary programming approach,
on the other hand, we implement a program that
takes as input a string of amino acids and produces
as output a set of coordinates. Then, the program
itself randomly changes, rearranging its own code
to, for example, duplicate some parts, delete oth-
ers, and so on. The environment selects those pro-
grams that produce the right solution and make
efficient computations.

The idea for a program that replicates and
changes its own code first arose among Bell Labs
researchers in the 1950s.6 Tom Ray, a former trop-
ical ecologist, created Tierra, the first truly evolv-
ing self-replicating program. An artificial world of
simplified program languages that allows programs
to mutate, replicate, and evolve, Tierra originally
randomly generated small programs, then selected
those that learned to self-replicate. Soon, other vari-
ants appeared that self-replicated more efficiently.
Further, a complete ecology of computer programs
evolved, including those that reproduced as a par-
asite hitching a ride on normal programs.

Many developments have followed Ray’s work,
including Avida (http://www.krl.caltech.edu/
avida/), an Internet program based on concepts
similar to Tierra, which lives on the Web and seeks
spare computer cycles to examine issues pertain-
ing to evolutionary biology.7

INTERDISCIPLINARY RESEARCH
Although many of the most exciting scientific

advances have arisen from interdisciplinary work,
in practice such collaboration is difficult. Many of
the most creative people have trouble finding sup-
port and institutional positions. While combining
the knowledge of two different fields can be diffi-
cult, we can overcome such problems if we work
hard and do our homework. There is absolutely no

Evolutionary
computing
generates a

population of
computer programs
and selects those

that are particularly
good at solving a
posed problem.

July 2002 31

reason why an expert in biological sciences should
not also be deeply knowledgeable in computer sci-
ence, mathematics, and statistics. Thus, the main
obstacles to interdisciplinary science stem from our
hubris, which manifests itself in two fallacies: col-
laboration and expertism.

Collaborative dissonance
The collaboration fallacy occurs in several steps.

First, an expert in one field needs “help in just this
little problem” and nothing else. A biologist for
example, might approach a computer scientist and
say, “I have this gene-finding problem. Can you run
a program for me?” The biologist assumes that

• the computer scientist will not be interested in
the biology,

• it’s too involved to explain everything, and
• the computer scientist would not understand

the explanation anyway.

Running such a program usually requires tedious
work on the computer scientist’s part. Lacking the
scientific context, such as why the gene is interest-
ing and the problem important, the computing
expert has no motivation to collaborate.

Second, the desire to revolutionize the other field
arises. After having been told the problem’s con-
text, the computer scientist may say, “Your whole
concept of a gene is flawed—here’s how we should
define a gene.” Indeed such fundamental restruc-
turing of an idea in Field A using insights from Field
B can be extremely rewarding and revolutionary.
However, this kind of attitude does not apply to
every interdisciplinary problem. Moreover, every
discipline has its own narrative tradition for pos-
ing and answering questions. Making progress
requires each expert to respect the other field’s tra-
dition. Thus, fundamental revisions are a long-
term, careful undertaking not to be embarked upon
hastily.

Third, the collaborators assume that “an expert
in Field A will have nothing useful to say about
Field B and vice versa.” Specifically, when two
experts get together, they expect each other to stay
within their own domains and communicate solely
through some narrowly prescribed interface.

If a computer scientist comments on the molec-
ular mechanisms of carcinogenesis, or if a biologist
makes a remark about Lambda calculus, our first
instinct is to wonder if this person knows what he
or she is talking about—an extremely unfortunate
situation given that such insights from outsiders
can lead to important breakthroughs.

Hubris of expertism
Thus does the certainty of our scientific

pedigree create the expert fallacy. We live in
an age of specialization. Experts rule. We talk
of “consulting the world’s foremost expert in
X” and “being taught by an expert in Y.”

True, we have amassed more information
today than ever before, and no single person
can be expected to absorb even a small frac-
tion of that knowledge. When two distinct
disciplines such as biology and computer sci-
ence come together, it may be asking too
much for one person to acquire the equivalent
knowledge of a specialist in each field. Yet, histori-
cally significant advances have frequently been made
by such cross-disciplinary collaboration.

By its very nature, the expert concept embodies
greed. It is not enough to be expert in a discipline,
you must strive to be the foremost expert. If others
attempt to contribute to your discipline, they threaten
your goal of exceeding all others. Thus, the computer
science expert may resist the notion that a biologist
might know something about computer science, just
as the biology expert may resist the notion of a com-
puter scientist understanding biology.

More importantly, given a collection of experts
from different fields, all will strive to position their
expertise as being the most important. Thus do we
learn to disdain the soft and applied sciences, non-
natural sciences, mere engineering, and so on.
Worse, this need to differentiate ourselves steadily
shrinks the domain of our expertise until we limit
ourselves to, say, the Department of the Droso-
phila’s Left Wing.

To make interdisciplinary research successful, we
must jettison this idea of the expert. All knowledge
is equal. Indeed, if we really knew which knowledge
is important and which is not, we could all use it
with shared certainty. Growth of knowledge,
whether personal or fieldwide, is haphazard and full
of windings and intricate turnings. Our best hope
lies in keeping our eyes open just in case something
interesting happens. We should pursue knowledge
vigorously but with agnostic value judgments.

ACCELERATING PROGRESS
Assuming we can overcome the obstacles to inter-

disciplinary collaboration, what can we expect from
the interactivities between biology and computer
science? In the ideal world, creativity and insight,
not technical processes, would drive science.

I remember the thrill of sitting at a terminal
attached to one of the early supercomputers and
suddenly realizing I was getting results back as fast

To make
interdisciplinary

research successful,
we must jettison

this idea of
the expert. All

knowledge is equal.

32 Computer

as I could think of things to do. My grand hope for
computational biology is that we will be able to pro-
vide this responsiveness in the future for all biolog-
ical problems. Not being a card-carrying computer
scientist, I cannot say what their dreams would be
in relation to biology. But I suspect they wouldn’t
differ much from the idea of a new computation
model that leads to robust, adaptive, flexible prob-
lem-solving machines—just like organisms.

The human brain contains about 1012 neurons
with peak synaptic activity of about 1 kHz, result-
ing in 1015 neuronal operations per second. We
obviously do not know how a single synaptic activ-
ity translates into a computer chip’s elementary
switch operations. But, with respect to pure infor-
mation processing capability, if that number falls
between 10,000 to 100,000 such operations, it
seems our thinking machines can be made compa-
rable to the human brain. At that point, we only
need to determine the software and the computa-
tion model to achieve genuine artificial intelligence.
This is where the interface between computation
and biology becomes important.

W e can anticipate a great prognosis for
interdisciplinary research in biology and
computers. Practically speaking, career

opportunities in computational biology are increas-
ing exponentially. Scientifically, computational
approaches rapidly devour the problems so easy to
approach using a computer, yet so difficult to tackle
in the laboratory.

The interface between computation and biology
thus offers one of the most exciting growth fields
today. Certainly, some of today’s claims and specu-
lations will turn out to be noise, and some of the
heat will inevitably cool. However, computers and
biology form a relationship so natural and com-
pelling that the growth of either field will critically
rely on their interaction. Our best hope lies in enthu-
siastically embracing this relationship without the
hubris of prejudice, thus hastening a time when indi-
viduals who can discuss quantum computation and
post-translational regulation with equal facility ini-
tiate a wave of synergistic revolutions. �

REFERENCES
1. J. Kim et al., “Identification of Multi-Transmem-

brane Proteins from Genomic Databases Using
Quasi-Periodic Structural Properties,” Bioinformat-
ics, vol. 16, 2000, pp. 767-775.

2. E. Pennisi, “Ideas Fly at Gene-Finding Jamboree,”
Science, vol. 287, 2000, pp. 2182-2184.

3. C.M. Blaschke et al., “Automatic Extraction of Bio-
logical Information from Scientific Text: Protein-Pro-
tein Interactions,” ISMB, 1999, pp. 60-67.

4. C.C. Maley, “DNA Computation: Theory, Practice,
and Prospects,” Evolutionary Computation, vol. 6,
1998, pp. 201-229.

5. L.F. Landweber and L. Kari, “The Evolution of Cel-
lular Computing: Nature’s Solution to a Computa-
tional Problem,” Biosystems, vol. 52, 1999, pp. 3-13.

6. A.K. Dewndey, “Computer Recreations: In the Game
Called Core War, Hostile Programs Engage in a Bat-
tle of Bits,” Scientific Am., May 1984, pp. 14-22.

7. C. Adami and C.T. Brown, “Evolutionary Learning
in the 2D Artificial Life System Avida,” Proc. Artifi-
cial Life IV, MIT Press, Boston, 1994, pp. 377-381.

Junhyong Kim is an associate professor of ecology
and evolutionary biology at Yale University. His
research interests include computational biology,
statistical theory, and molecular evolution. Kim
received a PhD in ecology and evolution from the
State University of New York, Stony Brook. He is
a member of the Society for Systematic Biology and
the Genetics Society of America. Contact him at
Junhyong.kim@yale.edu.

Investing in Students

computer.org/students/

Lance Stafford Larson Student Scholarship
best paper contest

✶
Upsilon Pi Epsilon/IEEE Computer Society Award

for Academic Excellence

Each carries a $500 cash award.

Application deadline: 31 October

SCHOLARSHIP
MONEY FOR
STUDENT
MEMBERS

